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This paper presents numerical results for the added-mass and damping coefficients 
of semi-submerged two-dimensional heaving cylinders in water of finite depth. 
A simple proof is given which shows that the added mass is bounded for all frequencies 
in water of finite depth. The limits of the added-mass and damping coefficients are 
studied as the frequency tends to zero and to infinity. A new formulation valid in the 
low-frequency limit is constructed by using a perturbation expansion in the wave- 
number parameter. For the limiting cases, dual extremum principles are used, which 
consist of two variational principles: a minimum principle for a functional and a 
maximum principle for a different but related functional. These two functionals 
are used to obtain lower and upper bounds on the added mass in the limiting cases. 
However, the functionals constructed (Bai & Yeung 1974) for the general frequency 
range (excluding the limiting cases) have neither a minimum nor a maximum. I n  
this case, the approximate solution cannot be proved to be bounded either below or 
above by the true solution. To illustrate these methods, the added-mass and damping 
coefficients are computed for a circular cylinder oscillating in water of several different 
depths. Results are also presented for rectangular cylinders with three different beam- 
draft ratios a t  several water depths. 

1. Introduction 
Small oscillatory motions of a two-dimensional cylinder in an inviscid incom- 

pressible fluid of finite depth with a free surface are described by a boundary-value 
problem governed by Laplace’s equation with a Neumann condition on the cylinder, 
a mixed-type boundary condition on the free surface, a homogeneous Neumann con- 
dition on the bottom and an appropriate radiation condition a t  infinity. Yu & Ursell 
(1961) considered the above problem for a semi-submerged circular cylinder in water 
of finite depth and found the added-mass and damping coefficients. Lebreton & 
Margnac (1  966) computed the added-mass and damping coefficients for rectangular 
cylinders on the free surface of water of finite depth. Kim (1967) computed the 
added-mass and damping coefficients for circular and Lewis-form (nearly rect,angular) 
cylinders in water of finite depth. Keil (1974) extended Grim’s method of multipole 
expansions to bodies in water of finite depth and computed the heave added-mass and 
damping coefficients of circular and Lewis-form (nearly rectangular) sections. Bai & 
Yeung (1974) also made computations of the heave added-mass and damping coeE- 
cients of both circular and rectangular sections in water of finite depth. The computa- 
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tions of Bai & Yeung agree with the results of Lebreton & Margnac and Keil but 
disagree with the other two earlier computations, which moreover differ among them- 
selves. The disagreement is most striking in the small-frequency range : the added-mass 
coefficients computed by Lebreton & Margnac, by Keil and by Bai & Yeung remain 
finite, whereas those computed by Yu & Ursell and by Kim tend to infinity as the 
frequency tends to  zero. Ursell(l974) showed analytically that the heave added mass 
in water of finite depth is finite. Chung, Bomze & Coleman (1974) also showed good 
agreement between their computation and the results obtained by Bai & Yeung. 
More recently, Kim (1975) was able to compute added-mass coefficients which agree 
with the results of Bai & Yeung for small frequencies by taking finer meshes in the 
computations. 

In  this paper, a simple proof is given in $ 3  that the added-mass coefficients of 
a semi-submerged body heaving in water of finite depth are finite: the proof given in the 
present paper is simpler than that given by Ursell (1974). This result for finite depth 
is contrary to the result of Ursell(l949) for water of infinite depth in the limiting case 
of zero frequency. We also present a new formulation for the zero-frequency limit by 
using a perturbation expansion for a small wavenumber. The limiting case of infinite 
frequency is also considered here. Both limiting cases are solved numerically by the 
finite-element method. As the basis of the numerical method, we used the dual 
extremum principles, which give upper and lower bounds on the added-mass coeffi- 
cients in the limiting problems. For completeness, results for the problem with arbitrary 
frequency are also presented. The added-mass coefficients computed from two different 
formulations are compared. Numerical tests of the upper and lower bounds are also 
presented. 

The added mass for the limit,ing frequencies can be computed by other numerical 
methods such as the method of singularity distributions, and finite-difference method, 
etc. However, for these methods there is no general criterion for the estimation of the 
accuracy of the numerical results. In  most numerical methods, one has to make several 
calculations to obtain an acceptable approximation to the solution. In  contrast, the 
dual extremum principles provide a pair of numerical values which are, respectively, 
upper and lower bounds of the exact solution. Therefore, the biggest advantage of the 
present method is that one obtains an absolute measure of the accuracy of each 
numerical result. The present results can also serve to check the accuracy of approxi- 
mate solutions obtained by other methods. 

2. Formulation of the problem 
A right-handed rectangular co-ordinate system is used with the y axis directed 

oppositely to the force of gravity and the x axis in the undisturbed free surface. It is 
assumed that the fluid is inviscid and incompressible and that the flow is irrotational; 
hence there exists a velocity potential. Furthermore, surface tension is neglected and 
simple harmonic motions are assumed. 

The two-dimensional oscillatory flow is described by the velocity potential 

Wx, y, t )  = Re {&x, Y) e-iut}, 

v2 q%y) = 0 

(2.1) 

(2.2) 

where u is the frequency and $(x, y) is the complex spatial velocity potential, which 
must satisfy 
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FIGURE 1. Domain of definition and boundary configuration. 

in the fluid domain D.  The boundary of the fluid domain D consists of the body 
boundary, the free surface, both infinities a.nd the bottom, which are denoted, respec- 
tively, by So, SF, sR1, SR, and S,, as shown in figure 1.  The body is assumed to undergo 
a small forced vertical displacement 

Y(t) = (Yo/a)sinat, (2.3) 

where Yo is the amplitude of heave velocity. If Y,  is taken as unity, the boundary 
condition on the cylinder is 

where n = (nl, n,) is the outward unit normal vector. 
Since the motions are small, it can be assumed that the resulting free-surface 

disturbances are also small, so that the linearized free-surface boundary condition 
can be applied: 

$ n = y =  n ~ Z T  (2.4) 

$,-v0$ = O on AS’,, (2.5) 

where vo = a2/g. (2.6) 

9, = 0 on 8,. (2.7) 

The bottom boundary condition for finite depth h is 

The radiation condition requires that the disturbances at  the infinities are outgoing 
waves; hence 

(2.8) lim (& T ik$) = 0, 
x+* w 

where k is the wavenumber and is determined by 

vo = k tanh kh. (2.9) 

Then the added-mass coefficient p and damping coefficient A are defined by the integral 

(2.10) 

wherep is the density of water and $ = + i$, is the potential for unit heave velocity. 
The above problem was solved by Bai & Yeung (1974) using the localized-finite-element 
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method based on a variational principle. Two functionals were constructed in their 
paper. 

3. Proof of the boundedness of the added mass 

depth. Let us consider a thin wedge described by 
It is proved here that the added mass is bounded for all frequencies in water of finite 

x = + f ( Y )  (3.1) 

undergoing the heave motion given in (2.3). The linearized body boundary condition 
can be expressed along the centre-line (x = 0)  as 

A = V ,  = df(Y)/dY7 (3.2) 

where df/dy is also assumed to be small. Here the amplitude of the heave velocity is 
assumed to be unity. Owing to  symmetry, only half of the fluid domain (x 2 0 )  is 
considered. Then the eigenfunctions of this problem are 

(3.3) 

(3.4) 

{exp (ikx) cosh k(y + h), exp ( -mix) cos mi(y + h)), 

- v, = mi tan mi h. 

where k is the wavenumber defined earlier and mi (i = 1,2, . . .) is defined by 

Then the original problem of the heaving wedge is reduced to the well-known wave- 
maker problem treated in detail by Wehausen (1967). Following Wehausen closely, 
the potential 

a 

can be expressed as 

ai 03' 

0 = 9 cosh k(y + h) sin (kz -at) - c - exp ( -mix) cosmi(y + h) cos crt, (3.5) k i = l  mi 

where the coefficients a, and a, (i = I ,  2, . ..) are defined as 
4k 0 

a, = s - Kh cosh k(y + h) dy, sinh2kh+2kh - h  

- cos mi(y + h) dy. 
a sin2mih+2mih 4mi so -1,. 

a .  = . 

The added mass of the heaving wedge can be expressed as 

p * a2 
2i=1 mi 

p = - -+[m,h+isin2mih]. 

Substitution of (3.6) in (3.7) gives 

13 - V, cosmi(y + h) dy [ 4mi 10, 
sin 2mi h i- 2mi h 1 = 1  

(3.7) 
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FIGURE 2. Subdomains of fluid domain separated by J, .  

where L is a large integer. By noting the relations 

i (2 j - l )n  < mih <jn for j = 1,2, ..., (3.9) 

the integral in the second term in (3.8) becomes 

V,cosmi(y+h)dy = O(l/mi) as mi+co. (3.10) 
L h  

Equation (3.10) is equivalent to the Riemann-Lebesgue lemma. By using (3.10), 
(3.8) reduces to 
. I  

(3.11) 
2mih+sin2mih L + l  

It follows from (3.11) that the added mass ,u is bounded for finite water depth h. It is of 
interest to note that this prooffails when the water depth h tends to infinity, as expected 
from the well-known result of Ursell (1 949). 

The above proof can be generalized to any body geometry by using the eigen- 
functions along an artificial boundary J1 which separates the fluid domain into two 
subdomains as shown in figure 2. We denote the subdomain which contains the body 
boundary by D, and the other semi-infinite subdomain by D,. Besides the common 
boundary J1, the boundary consists of the body, the free surface and the bottom, 
respectively denoted by So, SFl and S,, for the subdomain D,; similarly, the free 
surface, the bottom and the boundary at  infinity in D, are denoted, respectively, by 
SF,, S,, and SR,. Then the added mass is expressed by 

where 4 = + i$, and V,  is assumed real. In (3.12) the first two integrals are bounded 
since V4,  and $, are bounded everywhere in the fluid domain Dl, and the last integral 
is also finite as a consequence of the proof given earlier. Therefore the added mass is 
proved to be finite. 
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4. The reduction of the problem for the limiting cases 
The potential 9 is indeterminate when the frequency is zero owing to an additive 

constant which arises in the formulation given in 3 2. The result a t  zero frequency can 
be obtained only as a limit of the results for frequency approaching zero. Therefore 
we reformulate the oscillatory-cylinder problem for the limiting case of zero frequency 
by using the method of perturbation expansions. Throughout this section, the cylinder 
is assumed to  be symmetric with respect to the y axis. Henceforth only half of the 
fluid domain is considered. 

4.1. Zero-frequency problem? 

It is convenient to introduce a non-dimensional wavenumber as the perturbation 
parameter: 

Let a be the half-beam of the rigid cylinder, i.e. the x co-ordinate of the intersection 
point of the body and the free surface. Owing to symmetry, only half of the fluid 
domain (x 2 0) is considered. It is assumed that the depth of water h is of the same 
order as a, so that 

The following asymptotic expression for the velocity potential will be used: 

E = kh. (4.1) 

a/h = O(1). (4.2) 

(4.3) 9 = $(O) + €$w + €2$(*) + . . . . 
The existence (as well as the uniqueness) of this asymptotic expansion was proved 
by Ogilvie (1  960). Consequently the normal velocity on the cylinder V,  can be expressed 
as 

where V, is assumed real. 
v, = V$ +€Vg),  (4.4) 

By use of (2.9) and (4.1), the free-surface condition (2.5) reduces to 

9, - (E/h) tan (4 9 = 0, (4.5) 

+ , = i ~ $ / h  as x+w. (4.6) 

9, = (s2 - Qe4) $/h  + O ( @ ) .  (4.7) 

and by use of (4.1), the radiation condition (2.8) becomes 

By expanding (4.5) in a Taylor series, we obtain 

By substituting (4.3) and (4.4) in (2.2), (2.4), (2.7), (4.6) and (4.7) and collecting 
terms of the same order in E ,  we obtain, referring to figure 1, the following problems. 

V2qW = 0 in D, ( 4 . 8 ~ )  

9:) = o on S,, 9:) = V$) on S 0 ,  (4.8b, c )  

42) = o on SR2, 9:) = o on LYB,  (4.8d, e) 

( i )  The zero-order problem: 

9:) = o on x = 0. ( 4 3 f  1 
t Professor J .  N. Newman (private communication, 1975) has formulated this problem 

independently by a method different from the present one. 
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(ii) The first-order problem: 
VZ$(l) = 0 in D,  ( 4 . 9 4  

$'," = o on S,, Qz) = V i )  on So, (4.9b, c) 

#:) = i#(O)/h on SIrz, q5$ = 0 on S,, (4.9d, e )  

4:) = o on x =  0. (4.9f) 

(iii) Thejth-order problem ( for j  = 2,3)1: 

VZ$(j) = 0 in D, (4.1 Oa) 

$!) = $('j-z)/h on S,, $$) = 0 on So, (4.10b, c) 

$2) = i$(j-U/h on SR2, $:) = o on S,, (4.10d) e )  

4:) = o on x = 0. (4.10.f) 

A fundamental property of a harmonic function is that 

I#:) dS = 0 ( j  = 0) 1,2, ...) (4.11) 

for any simply connected closed contour in D .  By applying (4.11) to each of the 
boundary-value problems (4.8)) (4.9) and (4.10) we obtain 

V$') = o on h'o) (4.12) 

(4.13) 

and 

From (4.12) we obtain 

where the constant C(0) is to be determined. From (4.13) and (4.15) we obtain 

$(O) = C(O), (4.15) 

Q + iC(O) = 0, (4.16) 

where Q is the Aux through the body boundary: 

Q = / V$dS. 
So 

Then the constant C(0) in (4.15) is determined as 

$to) = C(0) = iQ.  

From (4.18), it follows that ( 4 . 9 4  reduces to  

$2) = i$(O)/h = -Q/h on SR2, 

(4.17) 

(4.18) 

(4.19) 

t The boundary condition (4.10b) can be expressed in an infinite series for more general cases 
i.e. j > 0, as follows: 

where a + with a negative superscript is understood to be zero. 
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and hence we find that #l) should behave like 

#(l) = ( - Q/h) z + C(l), (4.20) 

where C(1)is a constant. By using (4.18) and (4.20) it follows from (4.14) withj = 2 that 

i(x - a)  Q/h + i(c(l)- Qx/h) = 0 on SR2 (4.21) 

and hence the constant C(1) is 
C(1) = Qa/h. (4.22) 

From (4.20) and (4.22), the infinity condition (4.9d) becomes 

#(l) = ( - Q/h) (Z - U) on SR2. (4.23) 

It is easily shown that if boundary condition ( 4 . 9 4  is replaced by (4.23) then a unique 
solution can be obtained to (4.9). 

By using the same procedure we can determine successively the constants C(i) 
(j = 2,3), defined by 

1 "  p = - 1 p - 2 )  g , o )  d~ + c(j), (4.24) 
U 

by applying the flux relation given by (4.14). For example, for large 2 

$(2) = - i [Q(z - ~ ) ~ / 2 h 2 ]  + C('), 

where C(2) is determined from 

(4.25) 

(4.26) 

Since in the present work we are only interested in examining problems up to the first 
order, we do not need to determine the constants defined in (4.24). It should be noted 
that in the jth-order problem for j = 0, 1,2, . . . , the solution #j) is real when j is odd 
and imaginary whenj is even. This relation will be used below. 

When we consider the potential 4 in (4.3), retaining only terms up to order E ,  we have 

(4.27) $ = E[~&/E + #')I + O ( E ~ ) .  

For a heave velocity of unit amplitude, i.e. 

v, = EVt) = n2, 

the potential Q in (4.27) becomes 
(4.28) 

$4 = [iU/€ + p] + O(E). (4.27') 

Then the added-mass and damping coefficients defined in (2.10) may be expressed as 

(4.29) 

More specifically, by using the fact that the even-order potential is imaginary as 
mentioned earlier, (4.29) reduces to 

r 

p = p J  #( l )n ,dX+O(~~) ,  
SO 

(4.30 a)  

h = pvu2/E + O(E). (4.30 b)  
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By using the relation 
a2h/g = E tanh E = e2 + 0(c4) for small E ,  (4.31) 

we obtain from (4.30b) 
h = pa2(g/h)4 + O(E) .  (4.32) 

The asymptotic formula (4.32) shows that the damping coefficient A is a function of 
only the half-beam a and the water depth h and that it is independent of the shape of 
the submerged part of the body. 

It is also of interest to note that for higher-order problems the added mass can be 
expressed as 

p = p + €2 p (3) + 0 ( E 4 ) ,  (4.33) 

where 
r 

(4.34) 

Then ,d3) becomes the slope of the added-mass curve with respect to the non- 
dimensional wavenumber v,a, which behaves like e2a/h for small cr. 

4.2.  InJinite-frequency case 

The opposite limiting case, when the frequency tends to infinity, can be treated in 
a st>raightforward manner. By taking the limit as the frequency goes to  infinity, 
(2.21, (2.4), (2.5), (2.7) and (2.8) are reduced to 

V2# = 0 in D,  (4.35 a )  

$n = n2 on So, 4 = 0 on ,SF, (4.35 b,  c )  

q4m = 0 04 s,, x = 0, ( 4 . 3 5 4  e )  

= 0 on SR2. (4.35f) 

The solution of (4.35) can be determined uniquely. Here it should be pointed out that 
a systematic expansion procedure, in the manner of $4.1 for the low-frequency case, 
is not possible. This high-frequency case was treated by Ursell (1953) for a circular 
cylinder in water of infinite depth. 

5. Dual extremum principles 
In  this section we discuss the upper and lower bounds of the added mass for both 

of the limiting cases: zero and infinite frequency. The theory of the calculus of varia- 
tions shows that the solution of certain types of problem is characterized by both 
a maximum principle and a (different but related) minimum principle, referred to as 
the dual extremum principles. These principles are also known as the complementary 
variational principle or the upper and lower bounding principles. Two of the most 
familiar pairs of dual extremum principles are the potential- and complementary- 
energy theorems characterizing equilibrium in classical elasticity and the upper- and 
lower-bound principles associated with the Dirichlet problem of potential theory. 
We shall follow the latter in this paper. However, one can find a very extensive and 
systematic derivation of the dual extremum principles in a unified account of a diverse 
range of problems by Noble & Sewell ( 1  972). 

Miles (1971) showed that Schwinger's variational method can be used to form 
complementary variational principles which give upper- and lower-bound approxima- 
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tions to the solution of the problem of surface waves scattering from a circular dock 
in water of finite depth. Schwinger’s method is difficult to apply to non-rectangular 
geometries, since this method requires a set of eigenfunctions in the subdomains of the 
fluid; this approach is closely related to the well-known Ritz method. 

In  the present paper the added masses for the limiting cases are computed by the 
finite-element method, which does not require the set of known eigenfunctions of the 
problem. In this approach a set of piecewise-polynomial trial functions is used in each 
subdivided finite element. 

Since the following specific classical dual extremum principles are also discussed in 
some detail by Courant & Hilbert (1953, pp. 240-242) and Arthurs (1970), we only 
give a brief description here. Let us first summarize the first-order problem formulated 
in Q 4.1. This problem is rewritten, after dropping the superscript ( 1 )  on $, as 

V2q5 = 0 in D, ( 5 . 1 ~ )  

$u = 0 on S,, $n = n2 on So, 

$ = -a(x-a) /h on SR2, 

$n = 0 on S,, x =  0. 

(5.1 b, c) 

(5.1 d) 

(5.1 e , f )  

From the classical theory of the calculus of variations, the variational principle 
equivalent to the zero-frequency problem (5.1) can be expressed as 

6J{$} = 0 (5.2) 

with the essential condition (5 . ld) ,  where the functional J is defined as 

It should be noted here that the boundary condition (5.ld) is used as a natural con- 
dition by making use of the normal velocity computed from (5 . ld) .  Then a sufficient 
condition for the solution of the functional equation (5.2) to be unique is that the 
functional (5.3) should satisfy the essential condition ( 5 . l d )  at an arbitrary point on 
SR2, not on the entire boundary SB2. 

As an alternative, the zero-frequency problem (5.1) can be described in terms of 
a stream function $: 

V 2 $ = 0  in D,  ( 5 . 4 ~ )  

$ = O  on S,, $ = a - x  on So, (5.4b, c) 

$rn = 0 on SR2, $ = a  on S,, x =  0. (5.4 d- f )  

Here (5.44 can also be expressed as a Dirichlet-type boundary condition: 

$ = ( -a/h)y on #R2* (5.4d’) 

From (5.4) we obtain another variational principle (a complementary or dual varia- 
tional principle) as follows: 

with the essential boundary conditions (5.4b, c, e , f ) ,  where the functional K{$} is 
defined as 

SK{$} = 0. (5.5) 
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In  order to show that the global (not merely local) extrema of the functionals J 
and K are attained when the exact solutions $o and $o of (5.1) and (5.4) are provided, 
we introduce a small perturbation as follows: 

$ = $o+e$, @ = $o+e$. (5.7a, b )  

Here $o and $o are the exact solutions, 6 and $ are arbitrary functions of x and y, 
satisfying proper essential boundary conditions, and e is a small parameter. By 
substituting (5.7a) into (5.3) and (5.7b) into (5.6), we obtain 

where 

(5.9) 

(5.10) 

(5.11) 

In  (5.8) and (5.9), we assume that the boundary conditions, the natural and essential 
conditions, are properly taken into account. Since the velocity fields computed from 
either the potential or the stream function are the same, we have 

\ 

(5.12) 

By Green's theorem, (5.12) reduces to a line integral along the closed boundary of D: 

f$n$dS = f +n$dS* 
From (5.10)-(5.13), we obtain 

Jo = KO.  

(5.13) 

(5.14) 

From (5 .8) ,  (5.9) and (5.14), we obtain the following useful inequalities: 

J{$} < Jo = KO < IT{$}. (5.15) 

It is of interest to note that by using Green's theorem Jo can be further reduced to 
The equalities hold only when $ and $ are the exact solutions. 

where 

(5.16) 

(5.17) 

for large x. Here the boundary condition (5.ld) was used in (5.17). On subtracting 
(5.17) from (5.15) and multiplying'by 2p, inequalities (5.15) reduce to 

WJ{$} - (a2/2h) ( x  - u)l G P < 2p[K($)  - (a2/%) (z - a)] 
for large x. 

(5.18) 
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By a similar procedure, we can describe the infinite-frequency forms of (4.35) by 

V2$ = 0 in D, ( 5 . 1 9 ~ )  

qkn=0 on X,, $ = a - x  on X,, (5.19 b, c) 

$ = a  on X,, x = 0, (5.19d) e) 

introducing the stream function $ as follows: 

qFn = 0 on SR2. (5.19.f) 

Then we obtain the following dual extremum principles from (4.35) and (5.19): 

6J{$) = 0 (5.20) 

with the essential condition ( 4 . 3 5 ~ )  f )  and 

6K{$) = 0 (5.21) 

with the essential conditions (5.19c-e). Here J and K are defined as 

and 

n .  n 

(5.22) 

(5.23) 

By a procedure similar to that used for the zero-frequency case, it  may be shown that 
the upper and lower bounds on the added mass p at infinite frequency are given by 

2PJM G P G 2PK{$l. (5.24) 

It is of interest to note that (5.18) and (5.24) can be respectively interpreted as the 
maximum principle of the added mass with the functional J and the minimum principle 
with the complementary functional K .  The minimum principle of the added mass was 
discussed by Garabedian & Spencer (1952) in connexion with cavity flow problems. 

6. Numerical results and discussion 
The numerical details of the finite-element method can be found in Bai (1972, 

1975u)b). The infinity boundary condition was applied at  a finite but sufficient 
distance from the body. One can easily show, by using eigenfunction expansions, that 
the error due to the truncation of the original infinite boundary is negligibly small. 
Throughout the present numerical results, the last significant digit was rounded down 
for the lower bound and rounded up for the upper bound. 

In this section we present the results obtained by the two different methods: the 
dual extremum principles applied to the limiting cases treated in $54 and 5,  and the 
localized finite-element method applied to the general frequency range as described 
in Bai & Yeung (1974). The hydrodynamic coefficients are non-dimensionalized by 
making use of the submerged area S as follows: 

p = PIPS, R = A/gpS. (6.1) 

Here it should be remembered that S is half of the total submerged area since only 
half of the fluid domain is treated owing to symmetry. We denote the non-dimensional 
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I;, - 
h/u Lower bound Upper bound 

1.2 0.9565 0.9577 
1.5 0.6253 0.6263 
2.0 0.4968 0.4976 
2.5 0.4957 0.4967 
3.0 0.5325 0.5326 
4.0 0.6291 0.6370 
5.0 0.7315 0.7438 
6.0 0.8421 0.8512 

I;, 
I 

A > 
Lower bound Upper bound 

1.8326 1.8344 
1.4441 1.4456 
1.2235 1.2247 
1.1355 1.1369 
1.0909 1.0920 
1.0452 1.0523 
1.0242 1.0331 
1.0163 1.0236 

TABLE 1 .  The upper and lower bounds on j2, and I;, for a circular cylinder 
of radius x in water of depth h. 

0.4 I I 1 I I I I I 1 1 1 
1 2 3 4 5 6 

H a  

FIGURE 3. The added masses I;* and I;, of a circular cylinder 218. the water depth. 

added-mass and damping coefficients for the zero-frequency limiting problem by ,.Go 
and A,, those for the infinite-frequency limiting problem by Fm and A,, and those for 
the case of general frequency by 2; (a) and A(a). Then the non-dimensional damping 
coefficient for the zero-frequency limit can be expressed, from the asymptotic formula 
(4 .32) ,  as 

. I  

for ti circular cylinder and as 
a A,-, = 5 (voh)pf = 

( 6 . 2 ~ )  

(6 .2b )  

for a rectangular cylinder with draft b.  Here the non-dimensional wavenumber v is 
defined by 

(6 .3 )  v = v,a = u2a/g. 
4 F L M  81  
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h 

b 

<- 
- 

(a) 

I I I I I I I 

0 1 2 3 4 5 
Y 

1 2 3 4 
Y 

h 

FIGURE 4. (a) Added-mass coefficient P(u) and ( b )  damping coefficient h(u) of 
a circular cylinder ws. v. 
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V h/a = 1.5 h/a = 2 h/a = 5 

0.001 0.62535 0.49691 0.73176 
0.005 0.62572 0.4971 8 0.73114 
0.01 0.62616 0.49749 0.73036 
0.05 0.62974 0.50015 0.72358 
0.1 0.63444 0.50372 0.7 1381 
0.2 0.64450 0.51 165 0.68991 
0.4 0.66764 0.53138 0.63307 

TABLE 2. The added mass h(u) of a circular cylinder for small V. 

h/a = 1.5 h/a = 2 h/a = 5 

0~0001 
0.001 
0.005 
0.01 
0.05 
0.1 
0.2 
0.4 

103.9751 
32.8629 
14.6733 
10.3543 
4.5578 
3.1576 
2.1392 
1.3769 

103.9596 
32.8749 
14.7021 
10.3960 
4.6492 
3.2875 
2.3246 
1.6437 

90.0320 
28.4592 
12.7064 
8.9669 
3.9447 
2.7306 
1-8459 
1.1800 

90.0316 
28.4705 
12.7 324 
9.0032 
4.0263 
2.8471 
2.0132 
1.4235 

56.9383 
18.008 1 
8.0566 
5.6992 
2.5581 
1.8171 
1.2939 
0.9017 

56.9410 
18.0063 
8.0527 
5.6941 
2.5465 
1.8006 
1-2732 
0.9003 

n 
TABLE 3. Comparisons of the damping coefficients h(u)  and 4, of a circular 

cylinder for h/a = 1.5, 2.0 and 5.0. 

6.1. Circular cylinder 

Added-mass coefficients are presented for the zero- and infinite-frequency limiting 
cases a t  eight water depths: h/a = 1-2, 1.5, 2, 2.5, 3, 4, 5 and 6. The lower and upper 
bounds on the added mass for the limiting cases are given in table 1. The means of 
both bounds are also plotted in figure 3, since the lower and upper bounds are very 
close. The added-mass coefficients 1;, and I;, increase indefinitely as the depth h 
approaches the draft a. It is also of interest to note that $, decreases as h increases 
and approaches unity asyptotically; this is the well-known result for an infinite 
fluid. However, i, has a minimum value a t  a critical depth h,, which is approximately 
2 . 2 ~ .  The value ofPo increases monotonically as the depth increases beyond the critical 
depth. 

The added-mass and damping coefficients ,i? (a)  and A(a) are shown in figures 4 (a )  
and (b ) ,  respectively, for several different depths: h/a = 1.5, 2, 4 and 5. Numerical 
results for f i  (a)  are given in table 2 for some values of small v. In figure 4 (a)  the values 
of Po shown in figure 3 were used to continue the ;(a) curve up to v = 0. Figure 4 ( a )  
shows that in general the P(u) curve has non-zero slope at v = 0, as was discussed 
a t  the end of 54.1. It is of interest to note that the slope of the i ( a )  curve at  v = 0 
is positive when h < h, and isnegative when h > h,. We also observe that, when h < h,, 
$(a)  increases from the minimum value of Po at  v = 0 and approaches asymptotically 
the maximum value off, as the depth h increases. 

The damping coefficients A(a) are compared with A,, for small v values in table 3. 
The values of 2, were computed from the asymptotic formula ( 6 . 2 ~ )  and the agreement 

4-2  
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$0 
No. of elements , Relative 
(no. of nodes) Lower bound Upper bound error 

3 (18)  0.6349 1.2798 0.34 

14 (59) 0,7727 0.8521 0.05 
5 (26) 0.7398 0.9096 0.10 

92 (319) 0.806 1 0.8232 0.01 

TABLE 4. Convergence of the upper and lower bounds on $, 
for a rectangular cylinder with h/b = 2, a/b = 1.  

2.0 

1.5 

4 
4 

1 .o 

0.5 
0 4 8 12 16 

hlb 
FIGURE 5. Upper and lower bounds on the added-mass coefficients ,!lo and 

of a rectangular cylinder with a/b = 1 V.Y. the water depth. 

between A((T)  and A,, is excellent for the very small v. The agreement is still reasonable 
up to v = 0.4 for h/a = 5. In the numerical computations, ten straight-line segments 
(equally spaced at 9') are taken along a circle. 
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P O  12, 
A 7- r- ___) 

h/b Lower bound Upper bound Lower bound Upper bound 
1.1 4.5681 4.7090 5.4820 5.5564 
1.2 2.5918 2.6459 3.4666 3.5170 
1.5 1.2532 1.2820 2.0969 2.1213 
3.0 0.6800 0.6948 1.3343 1.3574 
8.0 0-9784 0.9993 1.1943 1.2326 

16.0 1-3432 1.3667 1.1550 1-2603 

TABLE 5. The lower and upper bounds on ,Lo and P, for a rectangular 
cylinder with a/b = 1 for various depths. 

\ Upper bound 

\v’ Lower bound 

Upper bound 
/ 

0 4 8 12 16 

hlb 
FIGURE 6. Upper and lower bounds on the added-mass coefficients Po of 

rectangular cylinders with a/b = 0.5 and 2.0 vs. the water depth. 

6.2 .  Rectangular cylinders 

We treat here rectangular cylinders with half-beam a and draft (submergence) b in 
water of depth h. Specifically, three different rectangular sections with alb = @5,1 and 
2 are considered for various depths and frequencies. 

A numerical experiment was performed to test the convergence of the upper and 
lower bounds of the added mass as a function of the number of elements (or nodes) 
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afb = 0-5 a/b = 2 
A r A 

\ r \ 

h/b Lower bound Upper bound Lower bound Upper bound 

1.5 0.5108 0.5240 3.5501 3.7971 
2.0 0.3958 0.4088 2.0658 2.1113 
3.0 0.3992 0.4151 1.3607 1.3930 
8.0 0.6058 0.6423 1.5212 1.5446 

16.0 0.8131 0.8662 2.1259 2.1539 

TABLE 6. The upper and lower bounds on &, for a!b = 0.5 
and 2.0 for various depths. 

2.0 

- 
b 

<; 1.5 

1 .o 

0.5 

hlb = 3 

I I I 1 I I I I I 

0 1 2 3 4 5 
V 

FIQURE 7 ( a ) .  For legend see next page. 

for the case a/b = 1, h/b = 2. The results of the numerical convergence test are given 
in table 4. The relative errors listed in table 4 are defined as the difference between the 
two bounds divided by their sum. In all cases, the infinity boundary condition was 
applied at a sufficiently large distance from the body. It is seen that the relative error 
decreases very rapidly as the number of nodes increases up to the 5 % error bound. 
However, a very large number of nodes is required in order to obtain an accuracy of 
within 1 yo. 

The upper and lower bounds onPo and ,& for alb = 1 were computed for 14 different 
depths and are shown in figure 5. 8ome of the numerical results are also given in 
table 5.  The upper and lower bounds on Po for a/b = 0-5 and 2 were computed for 
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3.0 

2.0 

0 0.2 0.4 0.6 0.8 1 

FIGURE 7. ( a )  Added-mass coefficient F(u) and ( b )  damping coefficient ;(a) 
of a rectangular cylinder with a/b  = 1 ws. v for several water depths. 

V 

hlb = 3 h/b = 6 

0-0001 57.6955 57.7350 40.8232 40.8248 
0.001 18.2454 18.2574 12.9026 12.9099 
0.005 8-1334 8.1650 5.7681 5.7735 
0.01 5-7290 5-7735 4-0748 4.0825 
0.1 1.6808 1.8257 1.2614 1.2910 
0.2 1.0802 1.2910 0.8577 0.9129 
0.4 0.6015 0.9129 0.5086 0.6455 

TABLE 7. Comparison of a(u) and A, for a/b  = 1 and hfb = 3 and 6. 

11 different depths and are shown in figure 6. Some of the numerical results are given 
in table 6. The added mass& has its minimum value at  a critical depth h, and increases 
monotonically ash increases from h,; the critical depths h, are approximately 2.3b for 
alb = 0-5,  3b for alb = 1 and 4b for a/b = 2 in figures 5 and 6; ,&, also increases in- 
definitely and rapidly as h approaches t,he draft b. It is of interest to note that with 
b fixed the critical depth h, increases as the beam a increases. However, in figure 5, 
fim does not have a minimum value at a finite value of v and tends to infinity as h 
approaches b, while as h c, 00 it  decreases monotonically and approaches asymptoti- 
cally a finite value of fim = 1-1884, which was obtained by Lewis (1929). Figure 5 also 
shows that pa can be approximated by the added mass obtained by Lewis (for the 
infinite-depth case) to within about 4 yo when the depth is larger than 6 times the draft. 

The added-mass and damping coefficients ,G((r) and A(a) are plotted in figures 7 (a) 
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and ( a )  respectively, for the case of a/b = 1 ; computations were performed for values 
of v ranging from 0.0001 to 5-0 and five depths: h/b = 1.5, 2, 3,4and 5. In  figure 7 (a),  
the added-mass curves of p(a) pass through the corresponding values of $, at v = 0;  
the curves are very smooth as one should expect. It is of particular interest to note 
that the $(g) curves for h/b = 4 and 5 have negative slopes at  v = 0, whereas the 
curves for h/b = 1.5 and 2 have positive slopes a t  v = 0. These results show, as in the 
case of the circular cylinder, that the slope of the,2(c) curve at  v = 0 is negative when 
h > h, and positive when h < h,. Here we can also observe, as in the previous results 
for the circular cylinder, that fi(a) has its minimum at a finite value of v, not at  v = 0, 
when h > h,. However, when h < h,, $(a) is a monotonically increasing function with a 
minimum value of 2, and approaches asymptotically the finite value of p,. The 
slope of the p(a) curve for h/b = 3 is nearly zero at  v = 0 in figure 7 ( a ) ;  this can 
be interpreted from figure 5, which shows that the critical depth h, is nearly 3b. 

The damping coefficients A(a) shown in figure 7 ( b )  are also compared with values 
of 2, computed from the asymptotic formula in (6.2b); some of the results are also 
given in table 7. The comparison shows a good agreement between A(c)  and 2, for 
small values of v ;  as v increases from 0.01 for the case h/b = 6, the results obtained 
from (6.2 b )  for 2, are over-predicted by more than 3 yo. 

It should be emphasized here that the difference between the upper and lower 
bounds on the added masses 8, and 1;, presented here can be further reduced 
simply by taking finer meshes in the domain of the fluid. Since we thought that the 
error range of the present results is reasonable for engineering purposes, we did not 
make further attempts to refine our results even though it would be very simple 
and straightforward to do so. 

The author is grateful to Professor T. F. Ogilvie for suggesting this topic, and to 
Professor J. N. Newman and Professor F. Ursell for their valuable comments during the 
preparation of this paper. This research was supported by the Numerical Naval 
Hydrodynamics Program at the David W. Taylor Naval Ship Research and Develop- 
ment Center. A part of this work was done while the author was at the Massachusetts 
Institute of Technology with the support of the Naval Sea, Systems Command’s 
General Hydromechanics Research Program, administered by the David W. Taylor 
Naval Ship Research and Development Center, Contract N00014-67-8-0204-0081. 

Note. After this paper had been completed, recent papers by Fujino (1976) and 
Sayer & Ursell (1976) came to my attention. Comparisons between their results and 
the results obtained by the present method are given in my discussions of these two 
papers. (These discussions will be published with the papers.) A related investigation 
using the present method will appear in Bai (1977). 
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